Capítulo 3 Modelo de regresión lineal simple
Suponer una FRP de dos variables:
\[ y_i = \alpha + \beta x_i + u_i \]
Dado que la FRP no es observable, se estima la FRM:
\[ \begin{array}{ccc} y_i = \hat \alpha + \hat \beta x_i + \hat u_i & \rightarrow & \hat y_i = \hat \alpha + \hat \beta x_i \, \therefore \\ y_i = \hat y_i + \hat u_i & & \because \, \hat y_i \equiv \text{Valor estimado de } \hat y_i \end{array} \]
¿Cómo se estima la FRM?
\[ \begin{aligned} y_i &= \hat y_i + \hat u_i \, \therefore \\ \hat u_i &= y_i - \hat y_i \\ &= y_i - (\hat \alpha + \hat \beta x_i) \\ &= y_i - \hat \alpha - \hat \beta x_i \, \rightarrow \hat u_i \equiv \text{Residuos} \end{aligned} \]
3.1 Mínimos cuadrados ordinarios
Objetivo: Seleccionar la FRM de tal forma que la suma de los residuos al cuadrado sea la menor posible \(\rightarrow \, \sum \hat u_i^2 = \sum (y_i - \hat y_i)^2\).
[IMAGEN]
Criterio de mínimos cuadrados:
\[ \begin{aligned} \sum \hat u_i^2 &= \sum (y_i - \hat y_i)^2 \, \rightarrow \hat y_i = \hat \alpha + \hat \beta x_i \, \therefore \\ &= \sum(y_i - \hat \alpha - \hat \beta x_i)^2 \, \therefore \\ \min_{\hat \alpha, \hat \beta} \sum \hat u_i^2 &= \sum(y_i - \hat \alpha - \hat \beta x_i)^2 \end{aligned} \]
CPO (Condiciones de primer orden):
\[ \begin{aligned} \frac{ \partial \sum \hat{u}_{i} }{ \hat{\partial} \alpha } &= 2 \sum (y_{i} - \hat{\alpha } - \hat{\beta}x_{i})(-1) = 0 \\ &= -2 \sum (y_{i} - \hat{\alpha } - \hat{\beta}x_{i}) = 0 \\ &= \sum (y_{i} - \hat{\alpha } - \hat{\beta}x_{i}) = 0 \\ \sum y_{i} &= n \hat{\alpha } + \hat{\beta}\sum x_{i} \, \rightarrow \text{Ecuación normal (1)} \end{aligned} \]
\[ \begin{aligned} \frac{ \partial \sum \hat{u}_{i} }{ \hat{\partial} \beta } &= 2 \sum (y_{i} - \hat{\alpha } - \hat{\beta}x_{i})(-x_{i}) = 0 \\ &= -2 \sum (y_{i} - \hat{\alpha } - \hat{\beta}x_{i})(x_{i}) = 0 \\ &= \sum (y_{i}x_{i} - \hat{\alpha } x_{i} - \hat{\beta}x_{i}^2) = 0 \\ &= \sum y_{i}x_{i} - \hat{\alpha }\sum x_{i} - \hat{\beta}\sum x_{i}^2 = 0 \\ \sum y_{i}x_{i} &= \hat{\alpha }\sum x_{i} + \hat{\beta}\sum x_{i}^2 \, \rightarrow \text{Ecuación normal (2)} \end{aligned} \]
Retomemos las ecuaciones normales \((1)\) y \((2)\) y resolvemos para \(\hat \alpha\) y \(\hat \beta\):
\[ \left . \begin{aligned} \sum y_{i} &= n \hat{\alpha } + \hat{\beta}\sum x_{i} \\ \sum y_{i}x_{i} &= \hat{\alpha }\sum x_{i} + \hat{\beta}\sum x_{i}^2 \end{aligned} \right\} \quad \mathrm{Ax = d} \]
\[ \mathrm{A} = \begin{bmatrix} n & \sum x_{i} \\ \sum x_{i} & \sum x_{i}^2 \end{bmatrix}_{2 \times 2} , \quad \mathrm{x} = \begin{bmatrix} \hat{\alpha} \\ \hat{ \beta} \end{bmatrix}_{2 \times 1} , \quad \mathrm{d} = \begin{bmatrix} \sum y_{i} \\ \sum x_{i} y_{i} \end{bmatrix}_{2 \times 1} \]
\[ \mathrm{x}^* = \mathrm{A}^{-1}\mathrm{d} \quad \because \quad\mathrm{A}^{-1} = \frac{1}{|\mathrm{A}|}adj. \mathrm{A} \]
\[ |\mathrm{A}| = \begin{vmatrix} n & \sum x_{i} \\ \sum x_{i} & \sum x_{i}^2 \end{vmatrix} = n\sum x_{i}^2 - \left( \sum x_{i} \right)^2 \] \[ \mathrm{C} = \begin{bmatrix} \sum x_{i}^2 & -\sum x_{i} \\ -\sum x_{i} & n \end{bmatrix} \rightarrow \mathrm{C}' = adj. \mathrm{A} = \begin{bmatrix} \sum x_{i}^2 & -\sum x_{i} \\ -\sum x_{i} & n \end{bmatrix} \] \[ \mathrm{A}^{-1} = \frac{1}{n \sum x_{i}^2 - \left( \sum x_{i} \right)^2} \begin{bmatrix} \sum x_{i}^2 & -\sum x_{i} \\ -\sum x_{i} & n \end{bmatrix} \]
$$ \[\begin{aligned} \mathrm{x}^* &= \frac{1}{n\sum x_{i}^2 - \left( \sum x_{i} \right)^2} \begin{bmatrix} \sum x_{i}^2 & -\sum x_{i} \\ -\sum x_{i} & n \end{bmatrix}_{2 \times 2} \begin{bmatrix} \sum y_{i} \\ \sum x_{i}y_{i} \end{bmatrix}_{2 \times 1} \\ &= \frac{1}{n\sum x_{i}^2 - \left( \sum x_{i} \right)^2} \begin{bmatrix} \sum x_{i}^2 \sum y_{i}-\sum x_{i}y_{i}\sum x_{i} \\ n\sum x_{i}y_{i}-\sum x_{i}\sum y_{i} \end{bmatrix}_{2 \times 1} \end{aligned}\]$$
\[ \left . \begin{aligned} \therefore \\ \hat{\alpha} &= \frac{\sum x_{i}^2 \sum y_{i} - \sum x_{i}y_{i} \sum x_{i}}{n\sum x_{i}^2 - \left( \sum x_{i} \right)^2} \\ \hat{\beta} &= \frac{n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i} }{n\sum x_{i}^2 - \left( \sum x_{i} \right)^2} \end{aligned} \right\} \quad \text{Estimadores de mínimos cuadrados ordinarios (MCO)} \]
Existen resultados equivalentes para \(\hat{\alpha}\) y \(\hat{\beta}\): 1. Retomar ecuación normal (1):
\[ \begin{aligned} \sum y_{i} &= n \hat{\alpha} + \hat{\beta} \sum x_{i} \\ \frac{1}{n}\sum y_{i} &= \left( n\hat{\alpha} + \hat{\beta} \sum x_{i} \right)\frac{1}{n} \\ \frac{\sum y_{i}}{n} &= \frac{n\hat{\alpha}}{n} + \hat{\beta} \sum \frac{x_{i}}{n} \\ \bar{y} &= \hat{\alpha} + \hat{\beta}\bar{x} \rightarrow \, \hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} \end{aligned} \] 2. Retomar estimador \(\hat{\beta}\): \[ \hat{\beta} = \frac{n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i}}{n\sum x_{i}^2 - \left( \sum x_{i} \right)^2} = \frac{cov(x,y)}{var(x)} \]
Demostración:
\[ \begin{aligned} \hat{\beta} &= \frac{cov(x,y)}{var(x)} = \frac{\sum(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum(x_{i}-\bar{x})} \\ &=\frac{\sum x_{i}y_{i} - \bar{y}x_{i} - \bar{x}y_{i} + \bar{x}\bar{y}}{\sum x_{i}^2 - 2\bar{x} \sum x_{i} + \sum \bar{x}^2} \\ &= \frac{\sum x_{i}y_{i} - \bar{y_{i}}\sum x_{i} - \bar{x} \sum y_{i} + \sum \bar{x} \bar{y}}{\sum x_{i}^2 - 2\bar{x} \sum x_{i} + \sum \bar{x}^2} \\ &= \frac{\sum x_{i}y_{i} - \frac{\sum{y_{i}}}{n}\sum x_{i} - \frac{\sum{x}}{n} \sum y_{i} + n\bar{x} \bar{y}}{\sum x_{i}^2 - 2\frac{\sum{x_{i}}}{n} \sum x_{i} + n \bar{x}^2} \\ &= \frac{\sum x_{i}y_{i} - 2 \frac{\sum{y_{i}}\sum x_{i}}{n} + n\bar{x} \bar{y}}{\sum x_{i}^2 - 2\frac{\left( \sum{x_{i}} \right)^2}{n} + n \bar{x}^2} \\ &= \frac{n\sum x_{i}y_{i} - 2 \sum x_{i} \sum y_{i} + \sum x_{i} \sum y_{i}}{n\sum x_{i} -2 \left( \sum x_{i} \right)^2 + \left( \sum x_{i} \right)^2} \\ &= \frac{n\sum x_{i}u_{i} - \sum x_{i} \sum y_{i}}{n\sum x_{i}^2 - \left( \sum x_{i} \right)^2} \\ &= \frac{cov(x,y)}{var(x)} \end{aligned} \]